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A stability theory for the steady swirling flow above an infinite rotating disk 
immersed in an otherwise unbounded rigidly rotating fluid is developed in order to 
corroborate the various numerical computations considered for this problem. An 
analysis of the initial-value problem for linearized time-dependent perturbations on 
the steady-state similarity solutions shows that the disturbance equations have a 
stable continuum spectrum which, under certain conditions, exhibits only algebraic 
decay in time. I n  addition, a numerical analysis on the discrete spectrum shows that 
there are unstable eigenvalues for certain rotational rates of the disk relative to the 
fluid a t  infinity. The results obtained are in good agreement with the large-time 
behaviour of the corresponding solutions of the unsteady similarity equations. 

1. Introduction 
The rotationally symmetric steady flow above an infinite rotating disk immersed 

in an otherwise unbounded fluid is governed by a set of nonlinear ordinary differential 
equations. These equations can be derived from the full Navier-Stokes equations 
using certain similarity transformations, and their integration thus provides a class 
of exact axisymmetric solutions of the fundamental governing equations of 
hydrodynamics. 

If we define s as the ratio of the angular speed of the rigidly rotating fluid a t  infinity 
to  that of the disk, then s = 0 corresponds to  the Karman swirling flow. It is also 
convenient to let a = l / s ,  and a = 0 then corresponds to the classical Bodewadt 
problem. I n  the case of a rotating disk immersed in a counter-rotating fluid for which 
s = a = - 1, McLeod (1970) has proved that a steady-state solution of the similarity 
equations cannot exist. His conclusion was consistent with the calculations of Evans 
(1969) and Bodonyi (1975), which suggested that the steady-state solutions can only 
be obtained outside the interval - 1.435 5 s 5 -0.1605 (or -6.23 5 a 5 -0.6968). 
On the other hand, Zandbergen & Dijkstra (1977) and Lentini & Keller (1980) have 
shown that the steady-state solutions are not unique in a certain bounded 
neighbourhood of s = 0, and that s x -0.1605 corresponds to the first branch point 
of an infinite family of multiple solutions. A numerical study by Bodonyi (1978) 
further indicated that, although solutions of the steady-state similarity equations 
exist for a 2 -0.6968, some of these solutions cannot be obtained as the large-time 
limit by a time-dependent calculation using the unsteady similarity equations. 
Instead, for a = -0.1 and -0.15, the solutions take on a limit-cycle character for 
large time; and, for a < -0.15, the numerical computations fail to converge following 
a blow-up behaviour similar to that discussed by Bodonyi & Stewartson (1977) and 
Stewartson, Simpson & Bodonyi (1982) for the case a = - 1 .  
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I n  view of these developments, i t  is desirable to develop a stability theory that 
will corroborate the various numerical computations. From the physical point of 
view, any steady-state solution that cannot be obtained as the large-time limit of 
the corresponding time-dependent Cauchy problem will not bc observable. This in 
turn suggests that  the question of physical uniqueness of the Karman swirling 
flow can be considered within the framework of the mathematical instability of the 
recently discovered multiple solutions. 

In  this paper, a systematic study is made on the stability of the steady similarity 
solutions. By considering the initial-value problem for linearized time-dependent 
perturbations on the steady-state solutions, we show that the disturbance equations 
have a continuous spectrum containing only stable modes. However, a numerical 
analysis of the discrete spectrum shows that i t  may have unstable eigenvalues 
for certain values of a or s. I n  particular, we show that the recently discovered 
multiple solutions in the neighbourhood of s = 0, as well as those solutions in the range 
-0.6968 5 a 5 -0.03, are indeed linearly unstable in a Cauchy sense. Our results 
are thus in good agreement with the large-time behaviour of the corresponding 
time-dependent solutions of the unsteady similarity equations. 

2. Problem formulation 
The governing equations for the basic swirling flow above an infinite rotating disk 

can readily be obtained from the axisymmetric Navier-Stokes equations written in 
the usual polar coordinates (P, 8,2) .  Here we let 2 = 0 be the plane of rotation of the 
disk and 52, and 52, be respectively the angular speed of the disk and that of the 
rigidly rotating fluid a t  infinity. We also introduce a reference angular speed a, which 
can be chosen as either Q, or 52,. For our purposes, however, i t  is not necessary to 
fix 52 until later. If we now let 8, .i, and 6 be the velocity components in the P-, 8- 
and &-directions respectively, and let 9 be the pressure, then, following Karman 
(1921),  we seek unsteady similarity solutions of the form 

[G, 6, 61 = ( v Q $  [rfi(z, t ) ,  V ( Z ,  t ) ,  -2&, t ) l ,  ( 2 . 1 ~ )  

(2.1 b)  9 = pvSZ[~y2r2+h(z, t ) ] ,  

where y = Q,/Q, p is the density, v is the kinematic viscosity, and 

On substituting (2 .1)  and (2 .2)  into the Navier-Stokes equations, we obtain 

f , t  = f,,, + 2ffW -&+ g2 -Y2,  ( 2 . 3 ~ )  

St = s,,+2fg,-22gf,, (2 .3b)  

h, = 2(f t -2f fz - f , , ) ,  ( 2 . 3 ~ )  

where subscripts denote partial derivatives. We note that in (2 .1)  the term +v52y2r2 
in 9 corresponds to the inviscid pressure, and that the equation for h(z ,  t )  is uncoupled 
from the equations for f ( z ,  t )  and g(z,  t )  in (2 .3) .  It will be sufficient, therefore, to 
consider only (2 .3a ,  b)  in our subsequent analysis. Moreover, apart from the equation 
for h(z, t ) ,  (2 .3)  is identical with the similarity equations obtained by substituting (2 .1)  
and (2 .2)  into the boundary-layer equations. I n  this instance, however, the terms 
neglected in the boundary-layer approximation are identically zero under the 
similarity transformation. 
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If we now let Qo =!= 0 be the reference angular speed and s = Q,/Qo, then y2 = s2. 
The no-slip condition a t  the disk and the rigid rotation of the fluid a t  infinity then 
imply for all t > 0 

f = f z = O ,  g = l  a t  z = O ,  ( 2 . 4 ~ )  
and 

f Z + O ,  g+s as z+co .  (2.4b) 

On the other hand, if we let Q = Q, + 0 and a = Qo/Q,, then y2 = 1 ,  and the 
boundary conditions for all t > 0 become 

and 
f = f z = O ,  g = a  a t  z = O ,  

f , + O ,  g + l  as z + m .  

( 2 . 5 ~ )  

(2.5b) 

Equations (2.3) together with (2.4) or (2.5) and some appropriate initial conditions 
a t  t = 0 define a Cauchy initial-boundary-value problem, the solutions of which are 
also solutions of the full Navier-Stokes equations. To study the stability of these 
solutions in the limit t - t  00, we consider the effects of small perturbations on the 
corresponding steady-state solutions. If a solution of (2.3) is stable, then all small 
perturbations of the corresponding steady-state solution should ultimately decay to 
zero as t+ 00, leaving the basic steady flow unchanged. Conversely, the flow is said 
to be unstable to  infinitesimal disturbances if any of the disturbances does not decay 
to zero, or if the flow evolves into a new steady state. 

To derive the appropriate disturbance equations, we write 

f ( z ,  t )  = f O ( 4  +fk t )  g(z, t )  = g o ( 4  +g”k t ) ,  (2.6a, b) 

wheref, and go satisfy the steady-state form of (2.3), i.e. ( ) t  = 0, andf and g” are small 
time-dependent perturbations. On substituting (2.6) into (2.3a, b )  and linearizing, we 
obtain 

( 2 . 7 ~ )  

& = @ZZ + Z ( f 0  $z - fo /  F g o f z  + g a .  (2.76) 

It follows from (2.6) and either (2.4) or (2.5) that  the boundary conditions for all t 
are given by 

f = f z = g = o  a t  Z = O ,  

and 
fZ+o, J - ~ O  as z - t c o .  

( 2 . 8 ~ )  

(2.86) 

Equations (2.7) and (2.8) then provide the starting point of our analysis. I n  $3  a study 
is made of the behaviour of the continuum spectrum of (2.7)-(2.8). A normal-mode 
analysis of the discrete spectrum of these equations is given in 54. 

3. The initial-value problem and the continuum spectrum 

Laplace transform in t such that 
To solve (2.7) and (2.8) with some appropriate initial conditions, we apply the 

J o  

and similarly forg”(z, t ) .  Then, on omitting (-) from the various transformed quantities, 
(2.7) becomes 

i f ”’ + 2(fo f”-.fi.f’ +f;f+ go 9 )  - hf’ = -f ’ ( 2 ,  O ) ,  

9” + 2 ( f o  g’ - f ;  9 - sof’ + s i f )  - hg = - g ( 2 ,  O) ,  
(3 .2 )  
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where ( )' = d/dz, andy(z,  0) and j ( z ,  0) are the initial values of? and j a t  t = 0. If 
we let 4 = If,f,f,  g, q'lT, (3.2) can be written as a first-order inhomogeneous system 
of the form 

where 
#' = A#-h, (3.3) 

0 1 0 0 0 
0 0 1 0 

0 0 0 0 1 
(3.4) h+2f,' -2fo -2go 

-29; 29, 0 h+2f,' -2f0 

h = lo, 0, h3,0,  h,lT, (3.5) 
with 

h3 = J ' ( z ,  O),  h, = j ( 2 , O ) .  (3.6) 

The boundary conditions for (3.3) are identical with those given in (2.8) except that  
f, fz, and j in (2.8) must be replaced by f ,  f' and g respectively. 

Consider now the solution of (3.3) by the method of complementary functions. First 
we note that, as z+ 00, f, = f,, f,' = f: = 0, go = y and 91, = 0, where f, is a constant 
which depends on 01 (or s). Thus the coefficient matrix becomes 

0 1  0 0 
0 0  1 0 

0 0  0 0 1 
0 h -2f, -27 

0 2y 0 -2fm 

(3.7) 

The eigenvalues of A, are given by 

PI = 0, P,,, = -f,TP+, P 3 , 5  = - f m T P - >  (3.8) 

where p+ = ( j& + h & 2yi)i and Re (p+ - ) > 0. We thus define five linearly independent 
homogeneous solutions of (3.3), i.e. 

(3.10) 

Before proceeding, i t  is useful to consider the behaviour of these solutions in the 
complex h-plane which is summarized in figure 1 for y > 0. First we note that is 
bounded and it automatically satisfies the boundary conditions (2.8 b )  a t  infinity for 
all values of h and f,. On the other hand, the behaviour of #k (k = 2 , .  .., 5) depends 
crucially on f,. 

I n  the case off, 3 0, Re (P2)  and Re (P,) are always < 0, and 4, and #3 are therefore 
always bounded as z +  a. The solutions #4 and 45 are, however, bounded only if 
A, < p+ and A, < p -  respectively, where p+ = - (Ai 2 ~ ) ~ / 4 & .  We note that the two 
branch cuts shown in figure 1 are placed so-as to render Re (p+ )  > 0. Moreover, when 
f, = 0 the parabolas defined by A,  = p +  - degenerate, and ihey coincide with the 
branch cuts emanating from h = +2yi. 
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$1,  #z, @3 bounded for all h 

-. G5 unbounded 

hr - G4 unbounded -- 

hi 

$ I  bounded for all h 
@4 and G5 unbounded for all h 

A, - G2 bounded - -  

FIGURE 1 .  Behaviour of di (i = 1 ,  . . . , 5 )  in the complex A-plane. 

In  the case off, < 0 the solutions #2 and 9, are bounded only if A, > p ,  and A, > p-  
respectively. The solutions 9, and +5 ,  on the other hand, are unbounded for all h since 
Re (p,) and Re (p5) are always > 0. 

It readily follows from (3.8) that  for y < 0 the behaviour of the various solutions 
in the complex A-plane can be obtained from figures 1 ( a ,  b )  by reflecting these figures 
about their respective A, axis. 

A simple calculation shows that the Wronskian of the 5 x 5 homogeneous solution 
matrix 9 = [Or]  is given by W ( z )  = l@(z)l = Wm/w(z), where 

11 P’LM 1.14 
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and z ,  must be chosen such that for z 3 2, the coefficient matrix A is sensibly 
constant. Using the method of variation of parameters, the solution of (3.3) can then 
be written as 

where 

(3.12) 

(3.13) 

Here H k ( z )  = - ( c 3 k  h, + c5k h5),  with c j k  being the cofactor of $ k j  in @. The lower 
limits of integration zk must be chosen such that the boundary conditions (2.8) are 
satisfied. It readily follows from (2.8b) and the behaviour of Cp4 and Cp5 a t  infinity that 
z4 = z5 = co. For convenience we write 

s' H k ( Z )  W(Z) dz = ak + s' H k ( Z )  ~ ( z )  dz (k = 1 ,2 ,3 )  (3.14) 
Zk 0 

such that 

The boundary conditions a t  z = 0 then imply 

I (3.16) 

where 

and 

a4 = f H,wdz, a5 = 
a, 

(3.17) 

The solution of (2.7) and (2.8) can now be obtained from (3.15) by the inverse Laplace 
transform. If we let 4 = v,r,p, f ,  TIT then 

eht 4 dA, (3.19) 

where the constant p must be sufficiently positive so that all singularities of 4 lie to 
the left of the line Vo (say) from p-ico to p +  ico. I n  order to evaluate the integral 
(3.19) by the method of residues, the path V,, must be closed to the left so that all 
the poles of 4 are enclosed. The appropriate enclosing paths of integration for f ,  2 0 
and f ,  < 0 are shown in figures 2 (a)  and ( b )  respectively. I n  particular, we note that 
for f ,  < 0 the choice of that  portion of the closed contour along the parabolic curves 
A, = p ,  is dictated by the fact that  Cp must be kept bounded as z ' t  co. 

It iseasily shown that the contribution of the integral along V R  vanishes as R+ co . 
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FIQURE 2. Paths of integration for the inverse Laplace transform. 

Thus (3.19) becomes 

where Res denotes the residue of exp ( A t )  # a t  the pole A,. Using an argument similar 
to that of Gustavsson (1979) in his study of the Orr-Sommerfeld problem, one can 
deduce from (3.15)-(3.18) that the poles of q5 are determined by E123 = 0, which is 
the ordinary eigenvalue relation for the normal modes of (2.7) and (2.8) (see $4). 
Moreover, the sum of the integrals along %'+ and %'- represents the contribution to 

11-2 
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4 from thc continuum spectrum of (2.7) and (2.8). We also recall that for f, 2 0 and 
A, < p ,  or A, < p-  there exist no fewer than four decaying homogeneous solutions 
of (3.3). Thus the values of A lying to the left of the parabolic curves A, = p ,  
appear to form a continuum of eigenvalues for which non-trivial homogeneous 
solutions of (3.3) can always be found which satisfy the three homogeneous boundary 
conditions a t  z = 0. Nevertheless, (3.20) shows that these continuous modes are not 
needed for the spectral resolution of the present initial-value problem. 

For general values off, the integrals in (3.20) are of very complicated form, and 
a complete analysis of the properties of the continuum spectrum based on (3.20) does 
not appear to be possible a t  the present time. However, by a somewhat tedious 
calculation (cf. Gustavsson 1979, pp. 1604-1605), we can show that the initial 
disturbance represented by the continuum spectrum will decay as t + co for all values 
off,. In  the case off, > 0 the decay rate is exponential and its time dependence 
is given by the factor t-aexp ( - f 5 t ) .  For f, < 0 the decay rate is algebraic and i t  
is dominated by a leading term proportional to t-i. 

Alternatively, these results can perhaps be seen more clearly by considering the 
large-time behaviour of the continuum modes as z + co using an approach similar to 
that used by Murdock & Stewartson (1977) in their study of the spectra of the 
Orr-Sommerfeld equation. To this end, we multiply (2.7b) by i and add to (2.7a) to 
obtain 

(fz+is")t = (fZ+iig"),,+2(f~-,&) (~z+iig")z-2ig,( fz+iig")+2(f~+ig~)f .  (3.21) 

(3.22) 
If we let 

x = f z  + is", 
then in the limit z+ 00 (3.21) becomes 

Xt = XZZ+2f,XZ--2YiX. (3.23) 

Note that (3.23) is valid for all values of ct for z sufficiently large, and i t  is of the 
heat-conduction type. Thus if we let 

x = exp [-fa z-f",t-2yitl@(z,t), (3.24) 

it is easily shown that (3.23) reduces to the heat equation in @, i.e. 

@t = kzz, (3.25) 

To study the large-time behaviour of (3.25), i t  is useful to introduce a further change 
of variables by writing 

(3.26) 

where q is an arbitrary constant and @Jr) must satisfy 

@ ; + [ q - f - l  411 2 I@., = 0. (3.27) 

Solutions of (3.27) can be expressed in terms of the Hermite polynomials Hp-l(q) when 
q is an integer. 

In  the case of solid-body rotation for which f, = 0 and y = 1 ,  (3.23) is exact for 
all z and the boundary condition a t  11 = 0 requires that @,(O)  = 0. This in turn implies 
that 

q = 2 ( n + l )  (n = 0 , 1 , 2 ,  ...). (3.28) 
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Thus the solution of (3.23) is given by 

(3.29) 

where the constant c, is dependent on the initial condition on x. However, since our 
interest here is the ultimate growth or decay of x as t - t  co, the precise form of the 
initial condition need not concern us. It is sufficient for our purposes to note that 
for t+ co with z fixed the leading term of (3.29) gives 

x cc zt-t e-art, (3.30) 

which shows that the disturbance does approach zero as t --f oc, although the decay 
is only algebraic. 

I n  the general case for which (3.23) is valid only in the limit z + c o ,  the arbitrary 
constant q in the solution of (3.23) can, in principle, be determined by matching to 
the solution of (3.21) which is valid for z of order one. On the other hand, we can 
also argue that the form of the solution of (3.23) for arbitrary a must be such that 
it be reducible to (3.29) in the limit of solid-body rotation. This then fixes q as in (3.28). 
Thus, in general, we have 

(3.31) 

which is valid as z+co .  It readily follows from (3.31) that, when f, > 0, x and 
therefore and # decay exponentially everywhere in the free stream as t -+ co. 
However, for f m  < 0, 1x1 has a maximum value - t-h occurring a t  z z -2f, t. Thus 
when f, < 0 it  is possible to  have an algebraic decay in t as t - t  00. 

4. The discrete spectrum 

form 
Within the framework of a normal-mode analysis, we seek solutions of (2.7) of the 

T(z, t )  = eAtF(z), @(z, t )  = eAtG(z). (4.1) 

Equations (2.7) then become 
4’ = A#, (4.2) 

where we now have 4 = [ F ,  F ,  F ,  G, G I T ,  and A is defined by (3.4). The homogeneous 
boundary conditions are 

and 
F = F = G = O  a t  z = O ,  

F + O ,  G+O as z + a .  

( 4 . 3 ~ )  

(4.3b) 

Equations (4.2) and (4.3) define a fifth-order singular eigenvalue problem on the 
semi-infinite interval [O, a). Moreover, using the definition (3.9) and (3.10), we let 
bk (k = 1 , 2 , 3 )  be t,he three bounded solutions of (4.2). Then, in the notation of $3  (cf. 
(3.18)), the eigenvalue relation for the discrete modes is given by 

El,,  = 0. (4.4) 

A description of the compound matrix method for the determination of the eigenvalue 
h based on (4.4) is given in the Appendix. 
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a 

0.038 
0.036 
0.035 
0.030 
0.020 
0.000 

-0.020 
-0.030 
-0.040 
-0.060 
-0.080 
-0.100 
-0.200 
-0.300 
-0.400 
-0.500 
-0.550 
-0.555 

-0.560 
-0.580 
-0.600 
-0.620 
-0.640 
-0.665 
-0.675 

A,, or A,, 
- 0.03839 
-0.03746 
-0.03699 
- 0.034 65 
- 0.02986 
-0.01983 
-0.009196 
-0.003653 

0.002044 
0.01 3 91 
0.02643 
0.03963 
0.11687 
0.21787 
0.35597 
0.56553 
0.72875 
0.74898 

0.932 77 
1.385 24 
1.74845 
2.15300 
2.680 43 
3.822 16 
4.71855 

4 

Ali or -Azi  

1.74565 
1.743 66 
1.742 66 
1.73764 
1.72747 
1.70659 
1.68498 
1.673 89 
1.662 61 
1.63947 
1.61553 
1.590 75 
1.452 83 
1.28483 
1.065 74 
0.71 1 14 
0.280 14 
0.16475 

0.60755 
0.34754 
0.22693 
0.145 32 
0.08573 
0.033 30 
0.01 8 38 

A 2  

TABLE 1. The eigenvalues A, and A, for -0.675 < a < 0.038 

4.1. The discrete modes for -0.675 < a < 0.038 

First we consider the steady similarity solutions in the neighbourhood of the 
Bodewadt problem. Thus we let Om be the reference angular speed of the basic flow 
such that a = 02,/Om, and we set y2 = 1, fZt = g, = 0 in (2.3). The resulting 
steady-state equations, together with the boundary conditions (2.5), are solved for 
a selected range of a by a shooting technique similar to the one used by Zandbergen 
& Dijkstra (1977). These solutions are then used in conjunction with (4.2)-(4.4) for 
the stability calculations. 

We begin with the case a = 0, which corresponds to the classical Bodewadt 
solution. Once we have obtained an eigenvalue for a = 0, the stability calculations 
can be extended to other values of a by incremehting a in small steps. At each stage, 
the value of A previously obtained a t  a nearby value of a can be used as the initial 
guess to start the iterative search for the eigenvalue a t  the current value of a. The 
eigenvalues A, and A, thus obtained for -0.675 ,< a ,< 0.038 are tabulated in table 
1 and they are also shown in figure 3. Note that for a 5 -0.557, A, and A, are real, 
but they coalesce at  a M -0.557 and then form a complex-conjugate pair with A, = A: 
for a 2 - 0.557. The overall trend in figure 3 also seems to suggest that A, + 03 and 
A,+O as a+-0.6968, at which point the steady-state equations become singular. 

Of special interest is the value of A,,, since it governs the growth or decay of the 
perturbation functionsf(2, t )  and g(z, t ) .  As can be seen from figure 3, A,, is negative 
for - 0.03 5 a 5 0.038, indicating that the perturbations decay to zero as t --f 03. We 
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-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 O 
a: 

FIQURE 3. The eigenvalues A,  and A, for -0.675 < a < 0.038. 

note that the locus of A, does not extend into the region a 2 0.04. I n  fact, a closer 
analysis shows that the locus of A, must terminate a t  a x 0.04, where i t  intersects 
with that part of the continuum spectrum defined by A,, = p-  (see figure 1). It is also 
of some interest to consider the behaviour of the eigenfunction Q near a = 0.04. An 
examination of the values of /3, near a = 0.04 shows that, while Re (p3) is negative 
for a 5 0.04, i t  increases toward 0 as a approaches 0.04 along the locus of A,. In  
figures 4 ( a )  and ( b )  we present the F component of the eigenfunction a t  a = 0 and 
a = 0.03, respectively. A comparison between these figures clearly shows a decrease 
in the decay rate of F (as z + co) at a = 0.03 as a consequence of the increase of Re (p,) 
toward 0. The highly oscillatory behaviour of the eigenfunction of a discrete mode 
in the neighbourhood of the continuous spectrum is similar to that exhibited by 
certain continuum modes of the Orr-Sommerfeld problem in a semi-infinite domain 
(cf. Grosch & Salwen 1978). Although the present search for eigenvalues cannot be 
claimed to be exhaustive, our results suggest that in the interval 0.04 5 a ,< 1 (say), 
only continuum modes exist which are stable. The steady-state solutions are 
therefore stable to small perturbations for -0.03 5 a 5 1. On the other hand, when 
a 5 -0.03, A,, is positive, implying that the steady-state solutions are ultimately 
unstable to infinitesimal disturbances. These results are in agreement with the 
large-time behaviour of the unsteady nonlinear similarity solutions discussed by 
Bodonyi (1978). 
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0.1 

A, 

-0.1 

-0.2 

-0.3 

-0.4 

- 

0- 
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- 

Branch I 

~ 

-0.20 -0.16 -0.12 -0.08 -0.04 
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- _ _  

I 

O.r 8 

FIGIJRE 5 .  The eigenvalue A, as a function of s. 

We also note that the eigenvalue problem (4.2)-(4.4) for -0.55 < a 6 1 has been 
studied earlier by Bodonyi (1973) using a finite-difference scheme and with the 
boundary conditions a t  infinity imposed a t  z = 30.3 and 60.6. Because of the 
replacement of the semi-infinite interval by a truncated interval, however, i t  appears 
that many of the eigenvalues obtained were spurious. In  addition to A, and A,, the 
finite-difference calculations of Bodonyi have also produced a number of higher modes 
for -0.55 < a 6 1 .  But when these ‘higher modes’ were used as initial guesses in 
the present numerical scheme, they failed to  produce converged results. Thus they 
must be regarded as only eigenvalues of the finite but not the semi-infinite problem. 

4.2. The discrete mode for -0.16054 5 s 5 0.07452 

Next we consider the steady similarity solutions in the neighbourhood of the Karman 
problem for which multiple families of solutions have recently been found by 
Zandbergen & Dijkstra (1977) and Lentini & Keller (1980). In  this case it is 
convenient to  let 52, be the reference angular speed of the basic flow and s = 52,/52,. 
With y = s the time-independent form of (2.3) together with the boundary conditions 
(2.4) are solved by the techniques described by Zandbergen & Dijkstra (1977). The 
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s 

-0.001 
-0.020 
-0.040 
-0.060 
-0.080 
-0.100 
-0.120 
-0.130 
-0.140 

s 
-0.160125 
-0.160 
-0.159 
-0.155 
-0.150 
-0.145 
-0.140 
-0.135 
-0.130 
-0.125 
-0.120 
-0.1 15 

s 
0.0739 
0.070 

Branch 1 
A 1  S 

-0.42860 -0.145 
-0.43479 -0.150 
- 0.434 06 -0.155 
-0,42565 -0.156 
-0.40896 -0.157 
-0.38235 -0.158 
-0.34202 -0.159 
-0.31397 -0.160 
-0.27697 -0.1605 

Branch I1 
A1 s 

0.058 11 -0.110 
0.06574 -0.100 
0.10547 -0.080 
0.178 55 -0.060 
0.22681 -0.050 
0.259 7 1 0.000 
0.28496 0.020 
0.305 51 0.040 
0.32283 0.060 
0.33777 0.070 
0.35087 0.072 
0.36248 0.074525625 

Branch I11 

0.42393 0.060 
0.42766 0.040 

4 9 

A 1  

-0.25292 
- 0.222 21 
-0.177 77 
-0.16544 
-0.150 88 
-0.13281 
-0.108 38 
-0.06789 
- 0.01 865 

A, 
0.37286 
0.39068 
0.41753 
0.43601 
0.44281 
0.45745 
0.455 18 
0.44821 
0.43601 
0.42766 
0.42578 
0.4233088 

hl 
0.43602 
0.44821 

TABLE 2.  The eigenvalue A, as a function of s along the first three branches ofthe multiple solutions. 
(The branch I solution at 8 = 0 corresponds to the classical Karman solution.) 

details of the multiple branches of solutions thus obtained can be found in Zandbergen 
& Dijkstra (1977) and Lentini & Keller (1980) and need not be repeated here; we shall 
use the same nomenclature as in these earlier papers and refer to the first three 
branches of the multiple solutions as branches I, I1 and 111. In  contrast to the results 
of 54.1, however, we find only a single real eigenvalue A, for the values of s considered. 
Our results are presented in figure 5 and they are tabulated in table 2. 

Consider first the solutions belonging to branch I for which stability calculations 
were made for -0,16054 < s < 0. We found that the value of A, decreases from 0 
at s = -0.16054 and it  remains negative in the interval, indieating that the 
steady-state solutions are stable to small perturbations. 

On the other hand, i t  can be seen from figure 5 that A, > 0 for all the branch I1 
solutions. Although we have not extended our stability calculations beyond the 
beginning of the third branch, the overall trend of the results in figure 5 strongly 
suggests that  all the recently discovered multiple solutions are unstable to small 
perturbations. 

We also wish to note that we have not been able to locate any discrete modes 
associated with the branch I solutions for s 3 0. The spectral properties of the present 
stability problem, especially the nature of the discrete spectrum if it exists, is 
certainly not well understood in the interval 0 < s < 1 .  It will be very useful to clarify 
this aspect of the problem in the future. 
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5. Concluding remarks 
In  this paper we have considered the mathematical stability of the similarity 

solutions of swirling flow above an infinite rotating disk immersed in an otherwise 
unbounded rigidly rotating fluid. We have shown that the present stability problem 
has a continuum spectrum and possibly a finite number of discrete modes. Although 
the continuum spectrum contains only stable modes, we found that the discrete 
spectrum can give rise to instability. An important conclusion which can be drawn 
from our results is that the recently discovered multiple solutions in the neighbourhood 
of the classical Karman swirling-flow solution are linearly unstable in a Cauchy sense. 
Thus, despite the non-uniqueness of these solutions, it is unlikely that any swirling 
flows other than those belonging to the same family as the classical Karman solution 
is physically realizable. A second conclusion that can be drawn is that there exists 
a critical value a = a, z -0.03 that divides the steady similarity solutions in the 
neighbourhood of the Bodewadt solution into two classes. The steady-state solutions 
are either stable or unstable depending on whether a is greater or less than a,. This 
conclusion is in complete agreement with the conclusion reached by Bodonyi (1978) 
based on a numerical study of the large-time behaviour of the solutions of the 
unsteady similarity equations. 

We note that the numericad study of Bodonyi (1978) also strongly suggested the 
existence of certain limit-cycle solutions when the steady-state solutions become 
unstable for -0.02 5 a 5 a,. Moreover, these limit-cycle solutions exhibit behaviour 
bearing strong resemblances to other supercritical instabilities in hydrodynamics. 
Thus i t  might be of' some future interest to investigate the effects of the nonlinear 
self-interaction of the unstable linear mode for 0 < a, -a 6 1 in the same general 
spirit, of the well-known weakly nonlinear hydrodynamic stability theory. 
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Appendix. The numerical procedure 
Computation of the eiyenvalue 

For numerical purposes we choose z, to be sufficiently large such that for x 2 z,, 
the coefficient matrix A (cf. (3.4) and (3.7)) is numerically indistinguishable from A,. 
Then on omitting the overall exponential factors in +42 and +43 the initial conditions 
for the bounded solut,ions are given by 

If the usual shooting method is applied to the present problem, these initial conditions 
can in principle be used to obtain three linearly independent solutions of (4.2) by 
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integrating from z ,  to 0. The boundary conditions ( 4 . 3 ~ )  would then require that 
the eigenvalue h be chosen (iteratively) such that (cf. (4.4)) 

4 ( 0 )  m4 U O )  

El,, = det Fi(0)  FL(0) Fj(0)  = 0. (A 2 )  

GI(0) Q,(O) G3(0) I 
We note, however, that owing to the length of the interval over which the integration 
must be performed, numerical instabilities inherent in (4.2) can quickly render Cpl, 
Cp, and 4, numerically dependent. This in turn can make an accurate determination 
of h based on (A 2) difficult. 
To overcome these difficulties, we make use of the so-called compound matrix 

method discussed by Ng & Reid (1979, 198O), which has been shown to be effective 
in dealing with eigenvalue problems involving unstable equations over a semi-infinite 
interval. For the present problem, the compound matrix method is based on 
considering the 3 x 3 minors of the solution matrix Qi = [Cp, ! C p z  i b3] rather than 
attempting to compute 4,, Cp, and Cp, separately. 

If we denote the ten minors of 9 by their respective 3-tuples of row indices in Qi, 
then, on arranging the 3-tuples in lexicographic order, these minors are given by 

91 = (1,293), y2 = (122,4), Y l O  = (3,435). (A 3 )  

I n  particular, we note that the eigenvalue relation (A 2) is equivalent to requiring 
that the minor yz vanish a t  z = 0, i.e. 

Y m  = 0. (A 4) 

If we now let y = [yl, y,, . . ., ylO]*, then y is called the third compound of Qi. By using 
the results of Schwarz (1970) or by differentiating (A 3) and using (4.2), i t  is easy to 
show that y satisfies the equation 

Y' = BY, 
where 

B =  

--2fo -290 
0 0 
0 h+2fi - 
0 n f 2f0' 

0 -2% 
0 2f: 

0 -29; 

-290 0 

-2g; 0 

- 0  0 

0 
1 
0 
2fo 
h + zf; 
0 
0 
0 
0 

29; 

0 
0 
1 
1 

0 
0 
0 
0 
0 

-% 

0 
0 
0 
0 

- 2Yo 
- 2fo 

0 -  
0 
0 

-2f; 

0 0 
0 0 
0 0 
1 0 
0 1 
0 0 

- Y o  1 
A+2ji -4f0 

2% 0 
0 0 

0 
0 
0 
0 
0 
1 
0 

- 2% 
- 2fo 

A+2fi - 

0 
0 
0 
0 
0 
0 
0 
0 
1 

- 4f0 

The application of the compound matrix method to the present problem thus involves 
the repeated integration of (A 5 )  from z ,  to 0 subject to the initial conditions (A 7). 
Simultaneously, an iterative procedure such as Newton's method must be used to 
iterate on h until the eigenvalue relation (A 2 )  is satisfied. 
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Computation of the eigpnfunction 
Once the required eigenvalue has been obtained by thc procedure just described, we 
can proceed to the determination of the corresponding eigenfunction $. First we write 

d = ‘1 dX + ‘2 d2 + ‘3 4 3 .  (A 8 )  

I n  the present scheme +1, #2 and +3 are not known explicitly. However, on rewriting 
(A 8) in component form and on eliminating cl, c2 and cg systematically in five 
different ways, we obtain 

Y ~ G ’ - ~ ~ G + ? / ~ F - ~ ~ ~ F  = 0. (A 13) 

For a detailed discussion of the general technique and the rationale used in the 
derivation of (A 9)-(A 13), readers may refer to Ng & Reid (1984). For our purpose, 
it is sufficient to note that (A 9) and (A 1 1 )  form a closed system of the form 

This then suggests that F ,  F and G can be obtained by integrating (A 14) subject 
to some appropriate initial conditions. Once F ,  F and G are determined, G and F 
can be computed algebraically using, for example, (A 11)  and then (A 12) or (A 13). 
It is clear, of course, that  (A 14) is singular a t  z = 0 and hence i t  is not possible to 
start the integration from the origin. Nevertheless, if we fix the normalization 
of 4 by letting F(0) = 1 then on substituting ( 4 . 3 ~ )  into (A 10) we have 
G(0) = y,(0) /y l (O).  Thus the initial conditions for 4 a t  z = 0 are completely specified, 
and (4.2) can be integrated one step forward from 0 to h (say). The value of +(h) now 
provides the necessary initial condition for (A 14). 

Next we note that as 2 - t ~  (A 14) has the asymptotic form 

A simple calculation shows that the roots of the characteristic equation associated 
with (A 15) are 0, p2 and P3. Thus as z+oo any solution of (A 14) is necessarily a 
linear combination of 4, and d3, and the boundary conditions (4.3b) are therefore 
automatically satisfied. On the other. hand, if one were to compute the eigenfunction 
# by integrating (4.2) directly, the resulting solution will quickly become numerically 
unstable for large z owing to the inevitable presence of some multiples of the 
unbounded solutions d4 and d5. 
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